A Study of the Disproportionation Equilibrium for Allyldibutyltin(IV) Chloride as an Approach to Understanding the Role of Organotins in the Aquatic Environment

Daniele Marton and Giuseppe Tagliavini

Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Universitá di Padova, Via Marzolo, 1, I 35131 Padova, Italy

The equilibrium:

2 Bu₂(CH₂=CHCH₂)SnCl

 \rightleftharpoons Bu₂Sn(CH₂=CHCH₂)₂+Bu₂SnCl₂

takes place when the allyltin chloride is stirred in water. This has been chosen as a model to understand the extent as well as the mechanistic pathdisproportionation reactions the 2 R₃SnX ⇒ R₄Sn + R₂SnX₂ which are thought to occur in the aquatic environment. The behaviour of Bu₂(CH₂=CHCH₂)SnCl has been studied in various media: water, water-acetone, waterethanol and water-hexane. It has also been ascertained that Bu₂(CH₂=CHCH₂)SnCl is a product arising at room temperature from the $Bu_2Sn(CH_2=CHCH_2)_2$ scrambling of Bu₂SnCl₂ either neat, in organic solvents or also in the presence of water. Equilibrium [1] has been interpreted as arising from a bimolecular interaction between the electrophilic aquo-cation $[Bu_2(CH_2=CHCH_2)Sn(H_2O)_n]^+$ and the nucleophilic molecule Bu₂(CH₂=CHCH₂)SnCl. Kinetic studies on R_3SnMe/Me_2SnX_2 (X = Cl, NO₃) systems in alcoholic solvents (R=Me, Et, n-Pr, i-Pr, n-Bu) support the assumption that, in dissociating media, redistribution processes can be promoted by ionic electrophilic species.

Keywords: disproportionation; triorganotin compounds; allyltins; aquatic environment

INTRODUCTION

Due to their bioactivity, triorganotin compounds, R₃SnX, have had varied applications, particularly as biological agents in areas such as

wood preservation and marine antifouling and as agrochemicals.² Therefore, these compounds, together with their organic derivatives arising from degradation processes, e.g. cleavage of Sn-C bonds, i.e.

$$R_3SnX \rightarrow R_2SnX_2 \rightarrow RSnX_3 \rightarrow SnX_4$$

have been introduced by man into the environment.³ As a consequence, their occurrence and fate in the environment have received considerable attention from numerous researchers.⁴ The biogenesis, the abiotic aquatic chemistry and mechanisms, and the nature of entry, transport or uptake of these organometals into environmental compartments have been the main broad categories of current research. However, many problems still need to be solved, especially towards understanding the role of triorganotin derivatives in aquatic systems, 5 where they may undergo disproportionation reactions such as

$$2R_3SnX \rightleftharpoons R_4Sn + R_2SnX_2 \qquad [1]$$

Several examples have been reported of disproportionations occurring with neat samples at high temperature, 6.7 i.e. under conditions which are far removed from those occurring in the environment. Triorganotin halides heated at 200 °C disproportionate to some extent, according to Ean [1]. Tributyltin chloride decomposes according to Eqn [2] on prolonged heating at 230 °C.8 Some organotin oxides and hydroxides are particularly susceptible to disproportionation, e.g. trimethyltin hydroxide loses water disproportionates in vacuo at 100 °C according to Eqn [3]. A similar disproportionation occurs when triphenyltin hydroxide is heated in vacuo at 135-140°C, 10, 11 while Ph₃SnOSnPh₃

portionates at 290 °C to Ph₄Sn and Ph₂SnO.¹²

$$2 Bu_3SnCl \rightarrow Sn + SnCl_2 + 3 C_4H_{10} + 3 C_4H_8$$
 [2]

$$2(CH_3)_3SnOH \rightarrow (CH_3)_4Sn + (CH_3)_2SnO + H_2O$$
[3

A few examples of disproportionations occuring under mild conditions have also been reported. Bis(tributyltin)oxide [(Bu₃Sn)₂O],impregnated into timber, is rapidly converted to other tributyltin species (Bu₃SnOX), and these subsequently undergo disproportionation Bu₄Sn and Bu₂Sn(OX)₂. 13 Dibutylvinyltin hydroxide disproportionates at room temperature with formation of dibutyldivinyltin, dibutyltin water.14 Tetravinyl-1-RCOO-3oxide and hydroxydistannoxanes (R = H, CH_3 and $ClCH_2$) disproportionate in acetone-water under heterogeneous conditions to trivinyltin carboxylates and polymeric vinyltin oxides with yields of about 90%.15

We recall our previous studies concerning the use of allyl and allyl-like tin halides, as well as BuSnCl₃ and other alkyltin chlorides as reactants in water either in homogeneous or heterogeneous conditions for C-C16-T9 and C-O-C20 bondforming reactions respectively. Particularly, the high reactivity of Bu₂(CH₂=CHCH₂)SnCl towards carbonyl compounds in water [for example, allyldibutyltin chloride reacts rapidly (in a few minutes) with several carbonyl compounds in the presence of water to give quantitatively homoallyalcohols and tetrabutyl-1,3-dichlorodistannoxane) has led us to study in detail the behaviour of this compound in the presence of water and other media. Indeed, we have preliminary observations²¹ that Bu₂(CH₂=CHCH₂)SnCl disproportionates in the presence of water to diallyldibutyltin and dibutyltin dichloride, as described by Eqn [1]. Therefore, we have taken into

consideration the system Bu₂Sn(CH₂=CHCH₂)₂/Bu₂(CH)=CHCH₂)SnCl/Bu₂SnCl₂ as a model which may contribute to a knowledge of the disproportionation of R₃SnX compounds in the presence of dissociating media; that is, under conditions which can be found in the aquatic environment.

EXPERIMENTAL

Materials

Allyldibutyl- and dibutylcrotyl-tin chlorides were prepared as previously described. 22.23 Diallyldibutyl and dibutyldicrotyl-tin were prepared following a new procedure via coupling of allyl bromides and organotin halides. 24.25 Dibutyltin dichloride, from Aldrich, was recrystallized before use from petroleum ether (40–60 °C). The organic solvents, commercially available, were used as received. All manipulations were carried out at room temperature and under an air atmosphere.

Equipment

The ¹¹⁹Sn and ¹³C NMR spectra (22.49 MHz for ¹³C and 33.35 MHz for ¹¹⁹Sn) were recorded with a JEOL FX 90Q multinuclear spectrometer operating in Fourier transform mode. The IR spectra were recorded with a Perkin–Elmer model 599 B spectrophotometer using CsI optics. Thin-layer chromatography (TLC) was performed on 5 cm \times 10 cm plates (Polygram®, SIL G/UV₂₅₄, Macherey–Nagel).

Method of analysis

The progress of the disproportionation reaction for the systems listed in Table 1 was monitored by TLC in both the aqueous and organometallic

Table 1 Analytical data for System 6: the disproportionation reaction of Bu₂(CH₂=CHCH₂)SnCl in the presence of water at room temperature

		CHCH ₂)SnCl H ₂ O (ml)	Time of stirring (h)	Recovered compounds		
Run	Bu ₂ (CH ₂ =CHCH ₂)SnCl (g[mmol])			Bu ₂ Sn(CH ₂ =CHCH ₂) ₂ (g, mmol [%])	Bu ₂ SnCl ₂ (g, mmol [%])	Bu ₂ (CH ₂ =CHCH ₂)SnCl ^a (g, mmol [%])
1	1.2 [3.88]	100	120	0.33, 1.11 [58]	0.33, 1.07 [56]	0.45, 1.45 [37]
2	1.2 [3.88]	30	170	0.40, 1.26 [66]	0.34, 1.12 [59]	0.43, 1.39 [36]
3	2.5 [8.08]	20	180	0.80, 2.54 [62]	0.72, 2.37 [59]	0.90, 2.92 [36]

^a Amount of unreacted Bu₂(CH₂=CHCH₂)SnCl.

phases using a 10% solution of chloroform in n-hexane as irrigant. The spots were detected by spraying with a 50% solution of sulphuric acid, and their $R_{\rm f}$ values were compared with those Bu₂SnCl₂ obtained from pure standards: $(R_f = 0.13)$; Bu₂(CH=CHCH₂)SnCl $(R_f = 0.38)$; $Bu_2Sn(CH_2=CHCH_2)_2$ ($R_1 = 0.55$). Analyses showed during the time that that $Bu_2(CH_2=CHCH_2)SnCl$ was partitioned between the two phases, the majority was in the organometallic phase; the $Bu_2Sn(CH_2=CHCH_2)_2$ was almost completely in the organometallic phase; and the Bu₂SnCl₂ was partitioned between the two phases, the greater part being in the water phase.

After an appropriate time, the two phases were separated, washed and extracted with ethyl ether. The ethereal solutions were dried with MgSO₄ and, after filtration, the solvent was removed by a Rotavapor. The two residues were analysed by ¹¹⁹Sn NMR spectroscopy. As an example, the ¹¹⁹Sn NMR spectral analysis of the reaction products of the run (1) in Table 1 gave the following result: the residue (0.88 g) recovered from the organometallic phase was a mixture $Bu_2Sn(CH_2=CHCH_2)_2$ (0.33 g,1.05 mmol), Bu₂SnCl₂ (0.1 g, 0.33 mmol), and unreacted $Bu_2(CH_2=CHCH)_2SnCl$ (0.45 g, 1.45 mmol); the solid residue (0.21 g) extracted from the aqueous phase was practically only Bu₂SnCl₂ (0.69 mmol) with traces of Bu₂(CH₂=CHCH₂)SnCl and [Bu₂SnCl]₂O.

RESULTS

Redistribution reactions

System 1: Bu₂Sn(CH₂=CHCH₂)₂Bu₂SnCl₂ without solvent

In a round-bottomed two-necked flask (25 ml), equipped with a condenser and dropping funnel, diallyldibutyltin (3.15 g, 10 mmol) was added to an equimolar amount of solid dibutyltin dichloride (3.04 g), under magnetic stirring. After a few minutes the system became homogeneous. The resulting liquid was analysed after 20 min. The IR spectrum, as well as the ¹³C and ¹¹⁹Sn NMR spectra, show that the product is allyldibutyltin chloride.

 $\nu_{s(Sn-C_{butyl})}$, 400 [w, $\nu_{(Sn-C_{allyl})}$], 340 [s, $\nu_{(Sn-Cl)}$] cm⁻¹. ¹¹⁹Sn NMR referred to TMT: $\delta+118.3$ ppm. ¹³C NMR referred to TMS: δ (butyl moiety) 13.6 (CH₃), 17.5 (CH₂—Sn), 26.8 (CH₂), 27.8 (CH₂) ppm; δ (allylic moiety) 23.8 (CH₂—Sn), 113.3 (—CH₂), 134.2 (—CH) ppm. ²⁶

A further run was performed using equimolar amounts of diallyldibutyltin (41 g, 130 mmol) and dibutyltin dichloride (39 g). After 1 h the product consisted of allyldibutyltin chloride. Distillation under vacuum (93–95 °C at 1 mm Hg) furnished 75 g of pure compound (94% yield).

System 2: $Bu_2Sn(C_4H_7)_2/Bu_2SnCl_2$ ($C_4H_7=E$ - or Z-crotyl, and α -methylallyl) without solvent

The procedure was the same as that used above. Bu₂Sn(C₄H₇)₂ (20.1 g, 58.6 mmol)—a mixture of six isomers:²⁷ (E,E)-, (E,Z)-, (Z,Z)-, (E,α) -, (Z,α) - and (α,α) -Bu₂Sn(C₄H₇)—was added with stirring to an equimolar amount of solid Bu₂SnCl₂ (18.2 g). After 1 h the product was analysed. The IR spectrum, together with the ¹³C and ¹¹⁹Sn NMR spectra, revealed the complete formation of Bu₂(C₄H₇) SnCl, in which the C₄H₇ group was presented as a 1:1 mixture of *E* and *Z* isomers. Distillation under vacuum (100–101 °C at 0.05 mm Hg) gave 29.6 g of pure product (80% yield).

IR: 3010 [m, $\nu_{(=CH)}$], 1645 [sh, $\nu_{Z(C=C)}$], 1638 [w, $\nu_{E(C=C)}$], 955 [s, $\delta_{E(CH=CH)}$], 530 [w, $\nu_{(Sn-C_{butyl})}$], 400 [w, $\nu_{(Sn-C_{allyl})}$], 330 (s, $\nu_{(Sn-Cl)}$] cm⁻¹. $\delta^{(119}\text{Sn NMR})$ referred to TMT: +119.7 and +117.8 ppm for Z- and E-Bu₂(C₄H₇)SnCl respectively.²⁸ $\delta^{(13}\text{C NMR})$ referred to TMS: Z-Bu₂(C₄H₇)SnCl (butyl moiety) 13.6 (CH₃), 17.5 (CH₂—Sn), 26.8 (CH₂), 27.9 (CH₂) ppm; (crotyl moiety) 12.7 (CH₃), 18.2 (CH₂—Sn), 122.2 (=CH), 125.3 (=CH) ppm. E-Bu₂(C₄H₇)SnCl (butyl moiety) 13.6 (CH₃), 17.5 (CH₂—Sn), 26.8 (CH₂), 27.9 (CH₂) ppm; (crotyl moiety) 17.8 (CH₃), 22.2 (CH₂—Sn), 124.2 (=CH), 126.2 (=CH) ppm.²⁹

System 3: Bu₂Sn(CH₂=CHCH₂)₂/Bu₂SnCl₂ in ethyl ether

An ethereal solution of Bu₂Sn(CH₂=CHCH₂)₂ (3.15 g, 10 mmol in 10 ml of ether) was added to a solution of Bu₂SnCl₂ (3.04 g, 10 mmol in 10 ml of ether). The solution was stirred for 1 h and then the solvent was taken off. Analysis of the liquid residue confirmed the complete formation of

Bu₂(CH₂=CHCH₂)SnCl. Additional runs performed in CHCl₃, CH₂Cl₂, petroleum ether and other organic solvents led to the same result.

Behaviour of allyldibutyltin chloride in various media

System 4: Allyldibutyltin chloride in EtOH-H₂O (25:10, v/v)

A solution of allyldibutyltin chloride (1.25 g, 4.04 mmol) in EtOH-H₂O (25:10, v/v) was stirred at room temperature. A white precipitate was formed. After five days, the solid was separated by filtration. The dry residue (0.55 g, 50% yield) consisted of tetrabutyl-1,3-dichlorodistannoxane (m.p. 110 °C; lit.³⁰ 110-112 °C). Unreacted allyldibutyltin chloride (0.58 g, 46%) was recovered from the solution.

System 5: Allyldibutyltin chloride in aqueous acetone

Allyldibutyltin chloride (9.3 g, 30.05 mmol) was rapidly added with stirring to a mixture of acetone (10 ml) and water (10 ml). A white precipitate was formed very quickly. After 1 h, the solid was filtered off. It consisted of tetrabutyl-1,3-dichlorodistannoxane (7.88 g, 14.25 mmol, 95% yield). From the filtrate homoallylic alcohol, (CH₃)₂C(OH)CH₂CH=CH₂, was recovered (90% yield).

System 6: Allyldibutyltin chloride in the presence of water

Table 1 shows the data and the results for systems involving $Bu_2(CH_2=CHCH_2)SnCl$ in water.

An appropriate amount of allyldibutyltin chloride (3.88-8.08 mmol) was added to distilled water (20–100 ml), and the resulting heterogeneous system was very slowly stirred for many days. An organometallic phase was always present together with an aqueous phase throughout this time, because of the low solubility of the organotin species in water. The progress and the products of the disproportionation process were analysed according to the procedure given under 'Method of analysis'. It is important to mention that at the initial stage, after dissolution of the organotin chloride, the pH of the aqueous phase decreases to a value in the range 4.5-5, typical of many aqueous solutions of R₃SnCl compounds.³¹ During the reaction, the aqueous solution becomes progressively more acidic, reaching a final pH around 1-1.5, which is typical of R₂SnX₂ species.

In all cases, as one can see from Table 1, after a period of 120–180 h three main compounds are recovered: Bu₂Sn(CH₂=CHCH₂)₂ and Bu₂SnCl₂ in a ratio of approximately 1:1, and unreacted Bu₂(CH₂=CHCH₂)SnCl. Traces of tetrabutyl-1,3-dichlorodistannoxane are also obtained.

DISCUSSION

In discussing disproportionations of organometallic species, we can say that they are examples where exchanges of metal-carbon with metal-X bonds occur (X = carbon, halogen, hydrogen, etc.). The most thoroughly investigated exchange reactions in tin chemistry are the redistribution equilibria of tetraorganotins with tetrahalides and organotin halides $R_{4-n}SnX_n$ (R = organic group, X = halogen, n = 1-3). These occur either under mild conditions or at high temperature, depending upon the nature of the R groups and halogens, and on the electrophilic strength of the scrambling reagent. The reaction rates decrease on passing progressively from SnX₄, RSnX₃, R₂SnX₂ to R₃SnX. For these reactions, secondorder rate constants are observed with values and thermodynamic data (large negative activation entropies) consistent with a four-centre transition state 32,34 (A).

Kinetic results for the redistribution reaction of tetramethyltin with dimethyltin dichloride in several aprotic polar solvents, where the electrophilic agent Me₂SnCl₂ is undissociated, give evidence of a reaction which proceeds via a fourcentre transition state³⁵ as shown. However, in alcoholic media, 36, 37 where ionic electrophilic species [Me₂Sn(solv)²⁺] are present, the observed rates for redistribution reactions of trialkylmethyltins, R₃SnMe (R = Me, Et, n-Pr, i-Pr and n-Bu), with dimethyltin dichloride³⁶ and dimethyltin nitrate³⁷ are much greater than those in aprotic polar solvents. Nevertheless, in all these cases the reactions are very slow. It is a matter of fact that exchanges of tin-alkyl with tin-halogen bonds are slow in comparison with those where unsaturated organic groups, such as allyl-like groups, are involved.

From our studies on allylic systems, we wish to

Scheme 1 Allylstannation of carbonyl compounds by means of $Bu_2R'SnCl$ compounds arising from the redistribution reaction of $Bu_2SnR'_2$ with Bu_2SnCl_2 (R' = allyl or allyl-like group).

mention the following redistribution processes: (1) between tetraallyltin and tin tetrachloride at 25 °C to produce triallyltin chloride, and (2) between triallylbutyltin and butyltin trichloride at 0 °C for the preparation of allylbutyltin dichloride. ³⁸ In addition, we recall our studies on the following systems: Bu₃Sn(C₄H₇)/Bu₂SnCl₂, Bu₃Sn(C₄H₇)/SnCl₃, and Bu₃Sn(C₄H₇)/SnCl₄, and systems where allenyl or propargyl groups are easily exchanged. ³⁸

In this study, we have re-examined the redistribution reaction at room temperature between diallyldibutyltin and dibutyltin dichloride either neat (cf. system 1) or in ethyl ether solution (cf. system 3): previous available data had been obtained at 80 °C. ¹⁵ All these results allow us to write the general equilibrium represented by Eqn [4],

$$Bu_2SnR'_2 + Bu_2SnCl_2 \xrightarrow{\text{redistribution}} 2 Bu_2R'SnCl \quad [4]$$
disproportionation

where R' = allyl or allyl-like group. The redistribution process proceeds rapidly towards the complete formation of the mixed allyltin chloride, either in neat or in aprotic polar solvents. In all cases, the electrophilic strength of the scrambling agent Bu₂SnCl₂ is the driving force moving the reaction from left to right. Also, in the presence of water, Bu₂R'SnCl is formed by scrambling of Bu₂SnR'₂ with Bu₂SnCl₂. This is supported by the allylstannation process according to Scheme 1.

The redistribution equilibrium in Scheme 1 is entirely confirmed by the results of system 5. When Bu₂(CH₂=CHCH₂)SnCl is slowly stirred in a heterogeneous acetone-water medium, homoallylic alcohol [(CH₃)₂C(OH)CH₂CH=CH₂] and tetrabutyl-1,3-dichlorodistannoxane are

formed in a near-quantitative yield. It may be concluded that the redistribution process of Eqn [4] operates at room temperature in any medium.

On the contrary, different results are achieved when allyldibutyltin chloride is stirred in a homogeneous water-ethanol system (cf. system 4). After five days unreacted allyldibutyltin chloride is recovered together with tetrabutyl-1,3-dichlorodistannoxane. Similarly, we have ascertained that tetrabutyl-1,3-dichlorodistannoxane is the main product recovered when allyldibutyltin chloride, dissolved in n-hexane, is stirred in the presence of water. In both cases, the main reaction is due to the protonolysis of the tin-allyl bond: for available kinetic data about protonolysis of the tin-allyl bond see Ref. 39.

In the presence solely of water, a peculiar reaction occurs for the heterogeneous system Bu₂(CH₂=CHCH₂)SnCl/H₂O. Data in Table 1 show that a disproportionation reaction takes place in such a system. After seven days, about 60% of the starting allyldibutyltin chloride is converted to diallyldibutyltin and dibutyltin dichloride.

We now discuss some aspects of this disproportionation which, from a general point of view, is a redistribution reaction. Owing to the insolubility of allyldibutyltin chloride in water, a very dilute saturated aqueous solution of it is formed initially upon mixing the two components. The pH of the aqueous phase decreases to about 5, because the dissolved allyldibutyltin chloride attains hydrolytic equilibrium, as any organotin halide does,³¹ according to Scheme 2.

Therefore, we believe that a reaction mainly located at the boundary surface of the two phases, i.e. between the electrophilic aquo-cation $[Bu_2(CH_2 - CHCH_2)Sn(OH_2)_n^+]$ and the nucleo-

Scheme 2 Hydrolytic equilibria of Bu₂(CH₂=CHCH₂)SnCl species in the aqueous phase.

Bu
$$Bu \longrightarrow Sn \longrightarrow CH_2\text{-}CH = CH_{2(om)} + (aq)Sn \longrightarrow Bu$$

$$Bu \longrightarrow Bu$$

$$Bu_2SnCl_{(aq)} + Bu_2Sn(CH_2CH = CH_2)_{2(om)}$$

$$+ Cl^{-} \longrightarrow Cl^{-}$$

$$Bu_2SnCl_{2(om)}$$

Scheme 3 Reaction at boundary of the organometallic (om) and aqueous (aq) phases.

$$R_{3}SnMe + Me_{2}Sn^{2+}_{(solv)} - \begin{bmatrix} R & Me \\ R & Sn & Me \\ R & Me \end{bmatrix}$$

$$R_{3}Sn^{+}_{(solv)} + Me_{3}Sn^{+}_{(solv)}$$

Scheme 4 Mechanistic pathway for redistributions on alcoholic media.

philic molecular species Bu₂(CH₂=CHCH₂)SnCl, occurs according to Scheme 3. We are uncertain about the actual composition of the components in Scheme 3. The data at our disposal are those concerning the final composition of the whole system (cf. Table 1). This composition represents the overall result of the balance between the equilibria in Scheme 3 and the redistribution process in Eqn [4], which primarily occurs in the organometallic phase.

The occurrence of an ion-molecule interaction is strengthened by previous results of kinetic studies in alcoholic media of the redistributions between the R_3SnMe species (R=Me, Et, n-Pr, i-Pr, and n-Bu) and Me_2SnX_2 (X=Cl, NO_3). There, the mechanistic pathway has been interpreted assuming that an electrophilic substitution at the saturated carbon centre is operating by an ionic solvated species via an S_E2 mechanism where the assistance of the solvent is important (Scheme 4).

This mechanistic pathway may be taken into consideration to explain the disproportionation process (see Scheme 3) occurring in the aqueous phase. This may be of some utility in understanding the equilibria occurring in the aquatic environment. However, other redistribution models must be considered because of different conditions in the aquatic environment (e.g. pH,

salinity, presence of metal halides which may behave as scrambling reagents such as HgCl₂, etc.). Indeed, the redistribution shown in Eq. [5].

$$2R_3SnOH \rightleftharpoons R_4Sn + R_2SnO + H_2O \qquad [5]$$

has also been found for mixed vinyltin derivatives. ¹⁴ In addition, many disproportionations of R₃SnX are achieved when X is a chelating group and/or a bridging group, e.g. —O—, —O₂CR or alkoxy ketone. ⁷ In our opinion, this field requires further investigations.

Acknowledgements We thank Dr James L Wardell (Department of Chemistry, Aberdeen University, UK), and Professor Larry R Sherman (Scranton University, PA, USA) for a critical reading of the manuscript and useful suggestions. We are also indebted to the MURST (Rome) and Consiglio Nazionale delle Ricerche (Rome), Progetto Finalizzato Chimica Fine II, for financial support.

REFERENCES

- P. J. Smith, Toxicological Data on Organotin Compounds, International Tin Research Institute Publn. No. 538, 1978.
- S. J. Blunden, P. A. Cusak and R. Hill, The Industrial Uses of Tin Chemicals, Royal Society of Chemistry, London, 1985.

- S. J. Blunden and A. H. Chapman, in: Organometallic Compounds in the Environment, Craig, P. J. (Ed.), Longman, London, 1986, and references therein.
- F. E. Brinckman and J. M. Bellama (eds), Organometals and Organometalloids—Occurrence and Fate in the Environment, American Chemical Society, ACS Symp. Ser. No. 82, Washington DC, 1978.
- J. J. Cooney, J. H. Weber and L. R. Sherman, in Biologial Diversity: Problems and Challenges, Majumdar, S. K., Brenner, F. J., Lovich, J. E., Schalles, J. F. and Miller, E. W. (eds), The Pennsylvania Academy of Science, Easton, PA, 1994.
- J. A. J. Thompson, M. G. Sheffer, R. C. Pierce, Y. K. Chan, J. J. Cooney, W. R. Cullen and J. R. Maguire, Organotin Compounds in the Aquatic Environment, NRCC Assoc. Comm. Scientific Criteria Environ. Qual. Publn. No. NRCC 22494, National Research Council of Canada, Ottawa, Ontario, 1985.
- S. J. Blunden, P. Harston, R. Hill and J. L. Wardell, Appl. Organomet. Chem. 4, 383 (1990).
- J. G. A. Luijten, and G. J. M. van der Kerk, *Investigation* in the Field of Organotin Chemistry, Tin Research Institute, Greenford, UK, 1958.
- C. A. Kraus and R. H. Bullard, J. Am. Chem. Soc. 51, 3605 (1929).
- O. Schmitz-Dumout and H. Meyer, Z. Anorg. Allg. Chem. 248, 289 (1941).
- R. F. Chambers and P. C. Scherer, J. Am. Chem. Soc. 48, 1054 (1926).
- 12. J. D. Donaldson, S. M. Grimes, A. F. L. Holding and M. Hornby, *Polyhedron* 4, 1293 (1985).
- 13. S. J. Blunden and R. Hill, Appl. Organomet. Chem. 2, 251 (1988).
- W. J. Considine, J. J. Ventura, B. C. Kushlefsky and A. Ross, J. Org. Chem. 1, 299 (1964).
- 15. V. Peruzzo, G. Plazzogna and D. Marton, *Inorg. Chim. Acta* 30, 145 (1978).
- A. Boaretto, D. Marton, G. Tagliavini and A. Gambaro, J. Organomet. Chem. 286, 9 (1985).
- 17. A. Boaretto, D. Marton and G. Tagliavini, *J. Organomet. Chem.* **297**, 149 (1985).
- D. Furlani, D. Marton, G. Tagliavini and M. Zordan, J. Organomet. Chem. 345, 341 (1988).

- 19. D. Marton, G. Tagliavini and N. Vanzan, *J. Organomet. Chem.* 376, 269 (1989).
- 20. G. Tagliavini, J. Organomet. Chem. 437, 15 (1992).
- G. Tagliavini, A. Boaretto, D. Marton and D. Furlani, Fifth Int. Conf. on the Orgnometallic and Coordination Chemistry of Ge, Sn and Pb, Padua, 1986, p. 58.
- 22. G. Tagliavini, V. Peruzzo, G. Plazzogna and D. Marton, *Inorg. Chim. Acta* 24, L47 (1977).
- 23. A. Gambaro, D. Marton, V. Peruzzo and G. Tagliavini, J. Organomet. Chem. 226, 149 (1982).
- 24. T. Carofiglio, D. Marton and G. Tagliavini, Organometallics 11, 2961 (1992).
- 25. F. von Gyldenfeldt, D. Marton and G. Tagliavini, Organometallics 13, 906 (1994).
- A. Gambaro, V. Peruzzo, G. Plazzogna and G. Tagliavini, J. Organomet. Chem. 197, 45 (1980).
- 27. T. Carofiglio, D. Marton and F. Lenzmann, *Anal. Chim. Acta* 281, 119 (1993).
- 28. A. Boaretto, D. Marton and G. Tagliavini, J. Organomet. Chem. 321, 199 (1987).
- A. Gambaro, D. Marton, V. Peruzzo and G. Tagliavini, J. Organomet. Chem. 204, 191 (1986).
- 30. R. Okawara and M. Wada, J. Organomet. Chem. 1, 81 (1963).
- 31. R. S. Tobias, *Organomet. Chem. Rev.* 1, 93 (1966) and references therein.
- 32. K. Moedritzer, *Organomet. Chem. Rev.* 1, 179 (1966) and references therein.
- 33. K. Moedritzer, Adv. Organomet. Chem. 6, 171 (1968) and references therein.
- R. E. Dessy, Y. K. Lee and J. Y. Kim, J. Am. Chem. Soc. 83, 1163 (1961).
- 35. Y. Yamashita, K. Saito, A. Yoshino and K. Takahashi, Bull. Chem. Soc. Jpn. 56, 2555 (1983).
- G. Plazzogna, S. Bresadola and G. Tagliavini, *Inorg. Chim Acta* 2, 333 (1968).
- 37. G. Plazzogna, V. Peruzzo, S. Bresadola and G. Tagliavini, *Gazz. Chim. Ital.* 102, 48 (1972).
- 38. G. Tagliavini, Rev. Si Ge Sn Pb Compd. 8, 237 (1985) and references therein.
- 39. H. G. Kuivila and J. A. Verdone, *Tetrahedron Lett.* 119 (1964).